Compressive properties of trabecular bone in the distal femur.

نویسندگان

  • Travis A Burgers
  • Jim Mason
  • Glen Niebur
  • Heidi L Ploeg
چکیده

Early loosening and implant migration are two problems that lead to failures in cementless (press-fit) femoral knee components of total knee replacements. To begin to address these early failures, this study determined the anterior-posterior mechanical properties from four locations in the human distal femur. Thirty-three cylindrical specimens were removed perpendicular to the press-fit surface after the surgical cuts on 10 human cadaveric femurs (age 71.5+/-14.2 years) had been made. Compression testing was performed that utilized methods to reduce the effects of end-artifacts. The bone mineral apparent density (BMAD), apparent modulus of elasticity, yield and ultimate stress, and yield and ultimate strain were measured for 28 cylindrical specimens. The apparent modulus, yield and ultimate stress, and yield and ultimate strain each significantly differed (p<0.05) in the superior and inferior locations. Linear and power law relationships between superior and inferior mechanical properties and BMAD were determined. The inferior apparent modulus and stresses were higher than those in the superior locations. These results show that the press-fit fixation characteristics of the femoral knee component differ on the anterior shield and posterior condyles. This information will be useful in the assignment of mechanical properties in finite element models for further investigations of femoral knee components. The property-density relations also have applications for implant design and preoperative assessment of bone strength using clinically available tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The limitations of canine trabecular bone as a model for human: a biomechanical study.

Distal canine femurs were sectioned into 8 mm cubic specimens. Orthogonal compression tests were performed to preyield in two or three directions and to failure in a third. Apparent density and ash weight density were measured for a subset of specimens. The results were compared to the human distal femur results of Ciarelli et al. (Transactions of the 32nd Annual Meeting of the Orthopaedic Rese...

متن کامل

Gender specific LRP5 influences on trabecular bone structure and strength.

A mutation in LRP5 (low-density lipoprotein receptor-related protein 5) has been shown to increase bone mass and density in humans and animals. Transgenic mice expressing the LRP5 mutation (G171V) demonstrate an increase in bone mass as compared to non-transgenic (NTG) littermates. This study evaluated LRP5 gene and gender-related influences on the structural and biomechanical strength properti...

متن کامل

Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation.

Wolff's law of trajectorial orientation proposes that trabecular struts align with the orientation of dominant compressive loads within a joint. Although widely considered in skeletal biology, Wolff's law has never been experimentally tested while controlling for ontogenetic stage, activity level, and species differences, all factors that may affect trabecular bone growth. Here we report an exp...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

Nanoindentation of Human Trabecular Bone – Tissue Mechanical Properties Compared to Standard Engineering Test Methods

There are generally two types of bone tissue: trabecular and cortical. Cortical bone is the more dense tissue found on the surface of bones and trabecular bone is a highly porous structure that fills the proximal and distal ends of all long bones (e.g. femur or tibia) and is also present as a filler in other bones (e.g. in vertebral bodies). While at themolecular level both the cortical and tra...

متن کامل

Compression or tension? The stress distribution in the proximal femur

BACKGROUND Questions regarding the distribution of stress in the proximal human femur have never been adequately resolved. Traditionally, by considering the femur in isolation, it has been believed that the effect of body weight on the projecting neck and head places the superior aspect of the neck in tension. A minority view has proposed that this region is in compression because of muscular f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2008